Long wave dynamics in the nearshore

 $\frac{\partial e}{\partial x} = \frac{\partial e}{\partial x} = -\frac{1}{2z} \frac{\partial a^2}{\partial x}$ $\frac{\partial^2 (h^3)}{\partial x} = \frac{\partial u}{\partial x} = -\frac{1}{2z} \frac{\partial a^2}{\partial x}$

Steph Contardo, Ryan Lowe, Jeff Hansen, Graham Symonds, Francois Dufois, Dirk Rijnsdorp and Ron Hoeke

INTERNATIONAL WAVE WORKSHOP, NOVEMBER 2019

3 x 2 x B (05 , 1 3 x 26

Background

Long (infragravity) waves Periods 20 s to 3 minutes. Associated with short-wave groups.

Why? Energetic in the nearshore. Role in inundation and erosion.

Background

Types of long waves:

- Bound to the group -> propagating at C_g, in antiphase with the group envelope. There is a solution (Longuet-Higgins and Stewart, 1962), for constant depth and valid in deep enough water.
- Free -> detached from the groups.

Two recognised mechanisms for generation of free long waves, associated with group breaking

- Breakpoint forcing (Symonds et al., 1982) -> steep slopes
- Bound long wave release (Masselink, 1995; Inch et al., 2017) -> mild slopes

Free waves generated over depths variations (Mei and Benmoussa, 1984; Janssen et al., 2003).

Background

What we know (and what we don't know):

As wave groups propagate into shallow water,

- the phase, between the group envelope and the long shifts from 180° offshore to 90° approaching the shoreline (measured and modelled numerically).

- the bound wave solution (constant depth) overestimates the amplitude of the long waves.

What this talk is about

- Understand the generation mechanisms
 Estimate phase lags and elevation amplitudes
- We run a (simple) linear 1D numerical model
- isolate the mechanisms

Some structure

- Simplest case, wave groups undisturbed (constant depth, no breaking)
- Most complicated case, depth varying and short-wave groups breaking

Simplifications:

Effect of depth variation

- Depth varying but no breaking
- One depth variation

Effect of group breaking

- Constant depth, breaking

The important equations

Flat bed solution (Longuet-Higgins and Stewart, 1962)

$$\zeta_{BLW} = -\frac{1}{\rho} \frac{S_{xx}}{gh - c_g^2} + constant$$

Model run Flat

Model run

snapshot

Model run

Х

Model run

snapshot

Model run Slope, no breaking

snapshot

Model run Slope, no breaking

Model run Single step

Model run Single step

Analytical solution Single step

Amplitude of free long waves (FLW): incoming and outgoing

Model run Flat, breaking

Model run Flat, breaking

Model run Back to single step

Conclusions

Simple model

- Visualise the processes.
- Base to develop solutions.
- Can be forced with measured short-wave amplitude.
- Any bathymetry profile.

Solutions which explain observations.

Conclusions

Understanding

- Role of the <u>radiation stress gradients</u>.
- Radiation stress gradients caused by short-wave group amplitude gradients or depth gradients.
- Similarity between free wave generation via breakpoint forcing and depth variation.
- Co-dependence between breakpoint forcing and bound wave release

Important in the context when forecast is needed and numerical models are efficient but time consuming.

S donote the flax of momentum sorres a reduced t Whet Sa denote the difference beingen this and the part due to the hy 24 + 25 24 + 25 19 101 D(hill) 3 6 Cushmum- Roir 10, 125 $\frac{G^2}{DE} = -\frac{1}{22} \frac{\partial u^2}{\partial z}$ $\frac{G^2}{DE} = -\frac{1}{22} \frac{\partial u^2}{\partial z}$ $\frac{G^2}{DE} = -\frac{1}{22} \frac{\partial u^2}{\partial z}$ (2) $\frac{\partial^2 (n^2)}{\partial \beta^2} \frac{\partial U}{\partial t} = \frac{\partial^2 \chi}{\partial \beta} \frac{\partial U}{\partial t} = \chi^2$ "T# UR Ro v) $\frac{\chi_{\partial U}}{\partial t} = \frac{\chi_{\partial U}}{g_{2}\chi_{\beta}} \frac{\partial M}{\partial t}$ 2an)a 10/2 zza $(E) \quad \frac{\partial E'}{\partial L^2} + \frac{i}{P} \frac{\partial M'}{\partial x^2} = 0$ -112 cosnt)20 382×BJU + 1 382GX tarp A2) E> BX de + i dM = 0 x2an $\frac{\partial g}{\partial t} + \frac{1}{p \beta x} \frac{\partial M}{\partial x} = 0$ toop (15 12, 0 -5k

Model run Flat, breaking, breakpoint forcing only

Model run Flat, breaking, breakpoint forcing only

Model run Flat, breaking, breakpoint forcing only

